You are here
The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction.
Title | The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction. |
Publication Type | Journal Article |
Year of Publication | 2022 |
Authors | Coutelier, H, Ilioaia, O, Le Peillet, J, Hamon, M, D'Amours, D, Teixeira, MTeresa, Xu, Z |
Journal | Genetics |
Date Published | 2022 Nov 07 |
ISSN | 1943-2631 |
Abstract | Telomere dysfunction activates the DNA damage checkpoint to induce a cell cycle arrest. After an extended period of time, however, cells can bypass the arrest and undergo cell division despite the persistence of the initial damage, a process called adaptation to DNA damage. The Polo kinase Cdc5 in Saccharomyces cerevisiae is essential for adaptation and for many other cell cycle processes. How the regulation of Cdc5 in response to telomere dysfunction relates to adaptation is not clear. Here, we report that Cdc5 protein level decreases after telomere dysfunction in a Mec1-, Rad53- and Ndd1-dependent manner. This regulation of Cdc5 is important to maintain long-term cell cycle arrest but not for the initial checkpoint arrest. We find that both Cdc5 and the adaptation-deficient mutant protein Cdc5-ad are heavily phosphorylated and several phosphorylation sites modulate adaptation efficiency. The PP2A phosphatases are involved in Cdc5-ad phosphorylation status and contribute to adaptation mechanisms. We finally propose that Cdc5 orchestrates multiple cell cycle pathways to promote adaptation. |
DOI | 10.1093/genetics/iyac171 |
Alternate Journal | Genetics |
PubMed ID | 36342193 |